INTEGRATING COMMON PROBLEMS FOR SHARED SOLUTIONS TECHNICAL WORKSHOP

REDUCTION/ELIMINATION OF EMISSIONS FROM HEXAVALENT CHROME (Cr6+) PLATING BATHS

IDENTITY OF CHROMIUM

Oxidation state of +2 to +6;

Chromium occurs in the environment predominantly in:

Trivalent state - occurs naturally

Hexavalent state, metallic chromium - industrial processes

- Soils and rocks contain small amounts of chromium in the trivalent state
- * Physicochemical properties
 Solubility Cr6+ = Soluble
 Cr3+ = Insoluble

* Chromium III less toxic than chromium (VI)

DISTRIBUTION OF CHROMIUM COMPOUNDS

- SOIL Cr³⁺ predominates Cr⁶⁺ is easily reduced to Cr³⁺ and its occurance is often the result of human activity
- WATER Hidroxides and complexes of chromium (III)
 In surface waters, ratio of Cr(III) to Cr(VI)
 varies widely
- AIR Present in form of particles or aerosols

 Both trivalent and hexavalent chromium are
 released into the air

EFFECTS OF Cr6+ ON HUMAN HEALTH

- * Respiratory problems
- * Gastrointestinal effects
- * Reproductive problems

MAJOR USES

- * Leather tanning industry
- * Manufacture of catalysts
- Pigments and paints
- Fungicides
- Ceramic and glass industry
- Photography
- * Chromium alloys and chromium metal production
- Chromium plating
- * Corrosion control

LEGISLATION

Air emissions

Ordinance n.°286/93, March 12

Pb +
$$Cr + Cu = 5 \text{ mg/m}^3\text{N}$$

$$CaCrO_4 = 1 \text{ mg/m}^3 \text{N (for } \geq 5 \text{ g/h)}$$

$$Cr_2(CrO_4)_3 = 1 \text{ mg/m}^3 \text{N (for } \ge 5 \text{ g/h)}$$

$$SrCrO_4 = 1 \text{ mg/m}^3 \text{N (for } \geq 5 \text{ g/h)}$$

PbCrO₄ = 5 mg/m³N (for
$$\geq$$
 25 g/h)

$$K_2CrO_4 + ZnCrO_4 = 0.1 \text{ mg/m}^3N \text{ (for } \ge 0.5 \text{ g/h)}$$

LEGISLATION

Wastewater

❖ Industry discharge in surface water: DL n.º 236/98, August 1

Emission Limits: Cr(VI) = 0.1 mg/l

Cr (VI) + Cr (III) = 2 mg/l

* Metal Finishing Industry: Ordinance n.° 1030/93, October 14

Emission Limits: Cr (VI) = 0,1 mg/l

Cr (III) = 3 mg/l

* Leather Tanning Industry: Ordinance n.º 512/92, June 22

Emission Limit: Cr (VI) + Cr (III) = 2 mg/l

LEGISLATION

Occupational Environment

Portuguese Standard - NP 1796, 1998

Personal Exposure Limit

chromium (metal and its compounds), as $Cr=0.5 \text{ mg/m}^3$ zinc chromate, as $Cr=0.01 \text{ mg/m}^3$ lead chromate, as $Cr=0.05 \text{ mg/m}^3$ tert- Butyl chromate, as $CrO_3=0.1 \text{ mg/m}^3$ chromium (soluble salts and chromic), as $Cr=0.5 \text{ mg/m}^3$ Cr (VI), soluble in water, as $Cr=0.05 \text{ mg/m}^3$ Cr (VI), insoluble in water, as $Cr=0.05 \text{ mg/m}^3$

Alternatives to Hex-Chrome

- * Alternative coatings, and processes exist
- * Critical processes and customer preference limit these.
- *As environmental pressures continue, more alternatives are made available, however customer expectations make some alternatives less possible to implement.
- *While implementation of an alternative may not be possible, process changes or treatment of emissions is possible to keep process within present and forcasted regulations.

Emissions from Hard Chrome Plating

Existing Technology to Reduce Emissions

Problem

- Hydrogen gas is released in the hard chrome plating process.
- *This gas entrains chromic acid and a mist is formed at surface of bath.
- * Treatment of emissions or controls are necessary to prevent chromic acid mist from entering plating rooom environment and the environment.

Some options available for reducing emissions

- *Addition of chemical supressants to plating bath that reduce misting
- *Chromium extraction from collected air stream prior to discharge at stack
- *Encapsulation of plating bath with hood to contain chromium mist.

(zero or near to zero discharge of chromium)

Fume Supressants

Chemical Fume Supressants

❖ Chemical fume supressants are added directly to chromic acid bath in order to reduce or supresses fumes or mists at the surface of an electroplating bath or solution.

Fume Supressants

- *Temporary fume supressants are dissipated by the decomposition of the active chemical components
- *Permanent fume supressants are dissipated by drag-out of the solution.

Fume Supressants: Foam Blankets & Wetting Agents

- Foam Blankets physically supress mists
- Wetting agents lower the surface chemistry of bath to reduce misting.

Mist Supressants

Plastic Floating Spheres

*75% reduction with 3 inch layer thickness of 1.5" spheres

Moisture Extractors

- ❖ Vertical Moisture Extractor
 - *Centrifugal force to remove chromic acid mist from a vertical exaust stream
 - *Smaller particles can pass though causing emission limits to be exceeded
- ❖Blade mist eliminators (Horizontal air stream)
 - *Vary in design and efficiency influenced by gas velocity, blade spacing and shape, seal integrity and cleaning frequency.
 - *30% of plating shops use this technology in US as primary emission reduction, second only to packed bed scrubbers. (1994 est.)

Mist Supressants

Scrubbers (Packed Bed Scrubbers or "Wet Packed Scrubbers")

- *Entrained chromic acid in air stream is transferred to wetted packed media, and then to a volume of recirculated fluid
- Scrubbers absorb gaseous component of chromic acid into liquid phase of recirculated fluid
- *Excess liquid is removed from final air stream
- *Multiple beds can increase efficiency

Disadvantage

*Increase in liquid hazardous waste while solving air pollution problems if the system is not designed as closed loop

Mist Supressants

Mesh Pad Mist Eliminators (Vertical or Horizontal Airflow)

- Fluids not used during typical air-cleaning operations
- *Emissions reduced by directing air through multiple layers of plastic filament
- *Efficiency is dependent upon: particle or droplet size, air velocity through pad, filament diameter, filament orientation and pad depth
- *Works through intertal impaction of droplets and interception of droplets by downstream fibers in mesh pad
- *Multiple layers and different types of filaments increase efficency
- High efficiency without extreme pressue drops or clogging of mesh pads within system can be achieved with proper setup and design
- *Many variations and setups exist with this type of system

Mist Supressants

Fiber Bed Mist Eliminators

- Use of very fine filaments in a fiber bed mist eliminator targets very small particles of chromic acid mist
- ❖ Similar to mesh pad systems, intertal forces eliminate larger particles
- Very small particles eliminated through Brownian motion
- *Horizontal airflow is directed through vertical cylinder that contains filter material.
- * Extracted particles coalesce into droplest on fiber surface and drain via gravity through drain on bottom of the unit.
- Can suffer from cloging like mesh pads, but can be alleviated by prefiltering or positioning fiber bed after a mesh pad mist eliminator.

Plating Bath Containment

Encapsulating Tank Covers (Emission Elimination Device or EED)

- Technology developed more recently
- ❖Cover placed over tank and the mist beneath the cover is contained
- ❖The gases evolved during the plating process pass through a selective membrane system
- Typically only oxygen and hydrogen are emitted
- *Prevents nearly all emission of chromic acid to the air
- *Worker exposure and environmental emission are eliminated as risk areas

Plating Bath Containment

EED Advantages

- Emission does not contain any hazardous properties
- ❖ System typically does not require an exaust system or stack to vent process air outside of facility because all emissions are contained under the hood
- *No exaust system and no fan motors allow for increased energy efficiency within a facility
- *No chromium bearing solutions or wastes are generated (as with wash down cycles for mesh pads or wet packed scrubbers)

Possible Drawbacks

- *Plating in tank must be stopped before parts can be added or removed
- *Requires either identical start/stop or ability for parts to undergo several plating cycles because of design

Combination Systems

- * All these and other types of chrome plating systems can be combined in various ways to best accomidate a facility.
- * Advantages of using multiple devices in one system:
 - Chemicals can be segregated
 - Duct work can be kept clean
 - Inlet loading can be reduced on end-of-line unit.

Next Steps

Stakeholders Already Identified

- * Assist in identifying other stakeholders within the plating industry who may have the need to reduce Chrome emissions.
- ❖Information from stakeholders necessary to build PAR and JTP
 - Design and purpose of current plating shop
 - *Identify current chrome emissions levels and desired levels

Next Steps

C3P

- Continue to identify stakeholders within plating industry
- Build PAR and JTP
- Build Test Plan, demonstrate and validate alternative technologies
- * Work with stakeholders to implement validated technologies

